skip to main content


Search for: All records

Creators/Authors contains: "Datry, Thibault"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Rivers are efficient corridors for aquatic animals, primarily under the assumption of perennial flow. However, the recognition that river drying is a common and widespread phenomenon requires reexamining animal movement through river networks. Intermittent rivers and ephemeral streams have been overlooked when studying animal movement, even though approximately 60% of the global river network dries. In the present article, we extend the current focus of river ecology by integrating the effects of drying on the movement of aquatic and terrestrial animals. Moreover, we introduce a conceptual model that challenges the current bias, which is focused on perennial waterways, by encompassing animal movement across hydrologic phases (nonflowing, flowing, dry, rewetting) and habitats (aquatic, terrestrial). We discuss their corridor function in conservation and restoration planning and identify emerging research questions. We contend that a more comprehensive and inclusive view of animal movement in dry channels will advance ecological understanding of river networks and respective conservation efforts.

     
    more » « less
  2. Abstract

    Accelerating the design and implementation of environmental flows (e-flows) is essential to curb the rapid, ongoing loss of freshwater biodiversity and the benefits it provides to people. However, the effectiveness of e-flow programs may be limited by a singular focus on ensuring adequate flow conditions at local sites, which overlooks the role of other ecological processes. Recent advances in metasystem ecology have shown that biodiversity patterns and ecosystem functions across river networks result from the interplay of local (environmental filtering and biotic interactions) and regional (dispersal) ecological processes. No guidelines currently exist to account for these processes in designing e-flows. We address this gap by providing a step-by-step operational framework that outlines how e-flows can be designed to conserve or restore metasystem dynamics. Our recommendations are relevant to diverse regulatory contexts and can improve e-flow outcomes even in basins with limited in situ data.

     
    more » « less
  3. Abstract Rivers that do not flow year-round are the predominant type of running waters on Earth. Despite a burgeoning literature on natural flow intermittence (NFI), knowledge about the hydrological causes and ecological effects of human-induced, anthropogenic flow intermittence (AFI) remains limited. NFI and AFI could generate contrasting hydrological and biological responses in rivers because of distinct underlying causes of drying and evolutionary adaptations of their biota. We first review the causes of AFI and show how different anthropogenic drivers alter the timing, frequency and duration of drying, compared with NFI. Second, we evaluate the possible differences in biodiversity responses, ecological functions, and ecosystem services between NFI and AFI. Last, we outline knowledge gaps and management needs related to AFI. Because of the distinct hydrologic characteristics and ecological impacts of AFI, ignoring the distinction between NFI and AFI could undermine management of intermittent rivers and ephemeral streams and exacerbate risks to the ecosystems and societies downstream. 
    more » « less
  4. Abstract Non-perennial streams are widespread, critical to ecosystems and society, and the subject of ongoing policy debate. Prior large-scale research on stream intermittency has been based on long-term averages, generally using annually aggregated data to characterize a highly variable process. As a result, it is not well understood if, how, or why the hydrology of non-perennial streams is changing. Here, we investigate trends and drivers of three intermittency signatures that describe the duration, timing, and dry-down period of stream intermittency across the continental United States (CONUS). Half of gages exhibited a significant trend through time in at least one of the three intermittency signatures, and changes in no-flow duration were most pervasive (41% of gages). Changes in intermittency were substantial for many streams, and 7% of gages exhibited changes in annual no-flow duration exceeding 100 days during the study period. Distinct regional patterns of change were evident, with widespread drying in southern CONUS and wetting in northern CONUS. These patterns are correlated with changes in aridity, though drivers of spatiotemporal variability were diverse across the three intermittency signatures. While the no-flow timing and duration were strongly related to climate, dry-down period was most strongly related to watershed land use and physiography. Our results indicate that non-perennial conditions are increasing in prevalence over much of CONUS and binary classifications of ‘perennial’ and ‘non-perennial’ are not an accurate reflection of this change. Water management and policy should reflect the changing nature and diverse drivers of changing intermittency both today and in the future. 
    more » « less
  5. null (Ed.)
    Nonperennial rivers are a major—and growing—part of the global river network. New research and science-based policies are needed to ensure the sustainability of these long-overlooked waterways. 
    more » « less